LECTURE 3

Enhanced Entity-Relationship Models (EER)

Dr. Philipp Leitner
philipp.leitner@chalmers.se
@xLeitix
LECTURE 3

Covers …

Small part of Chapter 3
Chapter 4

Please read this up until next lecture!
What we will be covering

Repetition of ER
EER extensions (mostly generalization)
Reminder: the very basics of ER Diagrams

Entities
- Things that exist in your database

Attributes
- The data that makes up those things

Relationships
- How those things relate to each other
ER notation cheat sheet

Figure 3.14 Summary of the notation for ER diagrams.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entity</td>
</tr>
<tr>
<td></td>
<td>Weak Entity</td>
</tr>
<tr>
<td></td>
<td>Relationship</td>
</tr>
<tr>
<td></td>
<td>Identifying Relationship</td>
</tr>
<tr>
<td></td>
<td>Attribute</td>
</tr>
<tr>
<td></td>
<td>Key Attribute</td>
</tr>
<tr>
<td></td>
<td>Multivalued Attribute</td>
</tr>
<tr>
<td></td>
<td>Composite Attribute</td>
</tr>
<tr>
<td></td>
<td>Derived Attribute</td>
</tr>
</tbody>
</table>

- Total Participation of E_2 in R
- Cardinality Ratio 1: N for E_1:E_2 in R
- Structural Constraint (min, max) on Participation of E in R

Copyright (c) 2011 Pearson Education
Complete example from last week

Figure 3.2
An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.
Short Repetition from the End of Last Week

Weak entities, partial keys
Relationship attributes
Derived attributes
Weak Entities

A **weak entity** does not have a key of its own (it cannot be identified in the database)
Instead it has an **owner** (a relationship with another entity that is not weak)

Weak entities are identified through a partial key and the owner

Notation:

- Double-line entity symbol and association symbol
- For partial key: **dashed underline**
An example of a diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.

Weak entity type

Partial Key
Attributes of Relationship Types

A relationship type can have attributes:
Example: Start_date of MANAGES

Value for each relationship instance describes the number of hours per week that an EMPLOYEE works on a PROJECT. Each value depends on a particular (employee, project) combination
Figure 3.2
An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.
Derived Attribute

Derived attributes are special in that they keep redundant information. Their value can be derived (calculated from other information)

Example:

Nr_of_employees
Is just the number of EMPLOYEE entities in the entity set

Notation:

Attribute with dashed line
Figure 3.2
An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.
Short Quiz
Another Example - a University Database (1)

The university is organized into colleges with an unique name, a main office, a phone, and a particular faculty member who is the dean of the college. Each college administers a few academic departments, each of which has an unique name, an unique code number, a main office, and a phone. A particular faculty member chairs each department. We also need to keep track of when this person started their chair position.

Departments offer a number of courses, each of which has a unique name, unique code number, a course level, credit hours, and a course description. We also need to keep track of course instructors, which are faculty members. Each instructor has a unique Id, name, office, phone, and rank. Each of these instructors works for exactly one primary department.
Another Example - a University Database (2)

The database will keep student data and store each student’s name (which is composed of first, middle, and last name), student Id (unique for each student), address, phone, major code, and date of birth. A student is assigned to one primary academic department. It is required to keep track of the student’s grades in each section (see below) the student has completed.

Courses are offered in sections, each of which is related to a single course and is taught by a single instructor. Each section has a unique identifier, a number, is taught in a semester and year, and in a classroom. Classrooms are identified through a combination of the building and room numbers. Finally, sections happen during specific times and days (e.g., TUE 13:15-14:45). The database tracks students in each section, and the grade is recorded as soon as it is available. A section must have at least 5 students.
Complete UNIVERSITY example
Subclasses and Superclasses

Entity type may have additional meaningful **subgroupings**: EMPLOYEE may be further grouped into roles: SECRETARY, ENGINEER, TECHNICIAN, …

Or based on method of pay: SALARIED_EMPLOYEE, HOURLY_EMPLOYEE

EER diagrams extend ER diagrams to represent these additional subgroupings, called subclasses or subtypes
Figure 4.1
EER diagram notation to represent subclasses and specialization.

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

Copyright (c) 2011 Pearson Education
IS-A Relationships

SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A EMPLOYEE,

An entity that is member of a subclass represents the same real-world entity as some member of the superclass

Subclass member is the same entity in a distinct specific role
Entity **cannot** exist in the database merely by being a member of a subclass; it must also be a member of the superclass
A member of the superclass can be **optionally** included as a member of any number of its subclasses

This is exactly like the polymorphism you know from Java (with a non-abstract superclass)
Examples:

A salaried employee who is also an engineer belongs to two subclasses:

- ENGINEER
- SALARIED_EMPLOYEE

A salaried employee who is also an engineering manager belongs to three subclasses:

- MANAGER
- ENGINEER
- SALARIED_EMPLOYEE
Attribute Inheritance

An entity that is member of a subclass inherits:

All attributes of the entity as a member of the superclass
All relationships of the entity as a member of the superclass

Again not at all different from Java
Specialization vs. Generalization

Specialization:
- Start from generic superclass
- Define subclasses as special cases of superclass

Generalization:
- Starts with multiple entities that “have something in common”
- Extract commonalities from subclasses into superclass
Figure 4.1
EER diagram notation to represent subclasses and specialization.
Specialization

Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

Figure 4.1
EER diagram notation to represent subclasses and specialization.
Generalization. (a) Two entity types, CAR and TRUCK. (b) Generalizing CAR and TRUCK into the superclass VEHICLE.
Diagrammatic notations sometimes used to distinguish between generalization and specialization:

- Arrow pointing to the generalized superclass represents a generalization
- Arrows pointing to the specialized subclasses represent a specialization

We don’t do this in this course
Identifying Subclasses

Predicate-defined subclasses

based on some predicate (condition)
E.g., Job-type = ‘Secretary’

Special case: **Attribute-defined subclasses**

all subclasses use the same attribute
E.g., Job-type = {‘Secretary’, ‘Technician’, ‘Engineer’}
Figure 4.4
EER diagram notation for an attribute-defined specialization on Job_type.
Basic Constraints

Two **basic constraints** can apply to a specialization/generalization:

Completeness Constraint / Partial
- Every entity must be a member of a subclass
- Cp.: abstract / concrete superclasses in Java

Disjointness Constraint / Non-Overlapping
- Subclasses of the specialization must be disjoint
- Entity can be member of at most one of the subclasses
Combinations

Leads to 4 combinations:

- Disjoint / total
- Disjoint / partial
- Overlapping / total
- Overlapping / partial
Figure 4.4
EER diagram notation for an attribute-defined specialization on Job_type.
Figure 4.5
EER diagram notation for an overlapping (nondisjoint) specialization.
Hierarchies and Multiple Inheritance

A subclass may itself have **further subclasses** specified on it
Specialization hierarchy

A subclass may have **multiple superclasses**
Multiple inheritance
(the book calls this lattices)
Figure 4.6
A specialization lattice with shared subclass ENGINEERING_MANAGER.
Union Types

All of the subclasses so far had a single superclass.

We may need to model a single inheritance relationship with more than one superclass.

Such a subclass is called a category or UNION TYPE.
Example:
The owner of a registered vehicle is either a person, a bank, or a company.
Another Short Quiz
Key Takeaways

Basic Notation of Generalization/Specialization in EER
 IS-A Relationships
 Attribute Inheritance

Types of Generalization/Specializations
 Total / partial
 Disjoint / overlapping

Union types and multiple inheritance